Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MSO202A/MSO202 Quiz 2 (September 7, 2013) Grading Scheme
 Introduction To Complex Analysis

Roll No.: \qquad Section: \qquad

Time: 40 Minutes
Marks: 40

Name: \qquad

Note: Give only answers (no details of workout) for Problems 1 to 8 at dotted lines. Each of these problems is of 5 marks.

1. Which of the sets $S_{1}=\left\{z: \operatorname{Im}\left\{\frac{z-2 i}{2}\right\}>0\right\}, S_{2}=\left\{z: \operatorname{Im}\left\{\frac{z-2 i}{4}\right\}<0\right\}, \quad S_{3}=\left\{z: \operatorname{Im}\left\{\frac{z-1-2 i}{4}\right\}>0\right\}$, $S_{4}=\left\{z: \operatorname{Im}\left\{\frac{z-1-2 i}{2}\right\}<0\right\}$ represent the half-plane $H=\{z:|z-i|<|z-3 i|\}:$

Abstract

(i)

(ii)

Solution: Observe that H is the half-plane below the line $y=2$, which is also the left-half plane passing through either of the points $2 i$ or $1+2 i$, with the direction of their boundary line determined by the unit vector $-\hat{i}$. Therefore, the correct answers are S_{2} and S_{4}.
(3 marks for one correct answer, 5 marks for both correct answers, deduct 3 marks for one extra answer and all 5 marks for two extra answers)
2. All the values of z for which $\sin z=\cosh 3$ are given by
\qquad
Solution: $\sin z=\operatorname{Cosh} 3 \Rightarrow \sin x \cosh y+i \cos x \sinh y=\cosh 3$
$\Rightarrow \cos x \sinh y=0$ and $\sin x \cosh y=\cosh 3$
$\Rightarrow x=2 n \pi+\frac{\pi}{2}$ and $y= \pm 3 \Rightarrow z=\left(2 n \pi+\frac{\pi}{2}\right) \pm i 3$, where n is an integer.
(5 marks, deduct 1 mark if values of z with correct values of x and $y=0$ are also included)
3. The value of the integral $\oint_{|z|=2} \log z d z$, where the circle $|z|=2$ is oriented clockwise, is

Solution: $\int_{|z|=2} \log z d z=-\int_{-\pi}^{\pi}[\ln 2+i \theta] \cdot 2 e^{i \theta} \cdot i d \theta=2 \int_{-\pi}^{\pi} \theta e^{i \theta} d \theta=4 \pi i$.
4. The order of zero of the function $h(z)=4 \cos z^{4}+2 z^{8}-4$ at $z=0$ is

Solution: The Taylor's expansion of $h(z)=\cos z^{4}$ around the point $z=0$ is

$$
\cos z^{4}=1-\frac{z^{8}}{2!}+\frac{z^{16}}{4!}+\ldots+(-1)^{n} \frac{z^{8 n}}{(2 n)!}+\ldots
$$

Therefore, the first nonzero term in Taylor's expansion of $h(z)=4 \cos z^{4}+2 z^{8}-4$ around $z=0$ is $\frac{z^{16}}{3!}$.
\Rightarrow Order of zero of $h(z)$ at $z=0$ is 16 .
5. The largest domain in which the functions $f_{1}(z)=\frac{1}{1-i} \sum_{n=0}^{\infty}\left(\frac{z-i}{1-i}\right)^{n}$ and $f_{2}(z)=\sum_{n=0}^{\infty} z^{n}$ are equal, is

Solution: Both the given functions are equal to $\frac{1}{1-z}$ in the domain $\{z:|z-i|<\sqrt{2}\} \cap\{z:|z|<1\}$ which is the largest such domain.
6. On which of the sets $T_{1}=\left\{\frac{1+i}{2 n^{1 / n}}\right\}_{n=1}^{\infty}, T_{2}=\left\{\frac{1+i}{(2 n)^{1 / n}}\right\}_{n=1}^{\infty}, T_{3}=\left\{\frac{1-i}{(2 n)^{1 / n}}\right\}_{n=1}^{\infty}, T_{4}=\left\{\frac{1-i}{2 n^{1 / n}}\right\}_{n=1}^{\infty}$, a function $f(z)$ (not identically zero) analytic in the square region $D=\{z=x+i y:-1<x<1,-1<y<1\}$ can have its zeros:
\qquad
Solution: The sequences of points in the sets T_{2} and T_{3} converge to $1+i$ and 1-i respectively, which do not lie in the region of analyticity of $f(z)$, while sequences of points in the sets T_{1} and T_{4} converge to $\frac{1+i}{2}$ and $\frac{1-i}{2}$ respectively, lying in the region of analyticity of $f(z)$. Therefore, by Isolated Zeros Theorem, $f(z)$ can have zeros only in the sets T_{2} and T_{3}.
(3 marks for one correct answer, 5 marks for both correct answers, deduct 3 marks for one extra answer and all 5 marks for two extra answers)
7. Let $f(z)$ be analytic in the whole complex plane \boldsymbol{C} and $|f(z)| \geq 1$ for all $z \in \boldsymbol{C}$. If $f(0)=1$, then $f(1)=$
\qquad .
Solution: $|f(z)| \geq 1$ for all $z \in \boldsymbol{C} \Rightarrow f(z) \neq 0$ in $\boldsymbol{C} \Rightarrow \frac{1}{f(z)}$ is an entire function Again, $|f(z)| \geq 1$ for all $z \in \boldsymbol{C} \Rightarrow\left|\frac{1}{f(z)}\right| \leq 1$ for all $z \in \boldsymbol{C}$. Thus, $\frac{1}{f(z)}$ is entire and bounded in \boldsymbol{C}
$\Rightarrow\left(\right.$ By Liouville theorem) $\frac{1}{f(z)}$ is a constant function. $\Rightarrow f(z)$ is a constant function in $\boldsymbol{C} \Rightarrow f(1)=1$.
8. Let C be the circle $|z-2 \pi|=2$ described once in clockwise direction. Then, the value of $Q=\oint_{C} \frac{\cos z}{(z-\pi)(z-2 \pi)^{3}} d z$, is

Solution: By Cauchy Integral Formula for derivatives,

$$
\begin{aligned}
Q & =-2 \pi i \times \frac{1}{2!}\left[\frac{d^{2}}{d z^{2}}\left[\frac{\cos z}{z-\pi}\right]\right]_{z=2 \pi}=-\pi i \times\left[\frac{d}{d z}\left(\frac{-(\sin z)(z-\pi)-\cos z}{(z-\pi)^{2}}\right)\right]_{z=2 \pi} \ldots \ldots \ldots \ldots \ldots \\
& =-\pi i \times\left[\frac{[-(\cos z)(z-\pi)-\sin z] \times(z-\pi)^{2}-[-(\sin z)(z-\pi)-\cos z] \times 2(z-\pi)}{(z-\pi)^{4}}\right]_{z=2 \pi} \\
& =-\pi i \times \frac{-\pi \times \pi^{2}+2 \pi}{\pi^{4}}=i\left(\frac{\pi^{2}-2}{\pi^{2}}\right) .
\end{aligned}
$$

(5 marks, deduct one mark if given answer is negative of right answer, deduct one mark if answer is left at step (*))

